
Good-Enough Memory Consistency
Michael D. Bond
Ohio State University

mikebond@cse.ohio-state.edu

C is for [consistency], that’s good enough for me
C is for [consistency], that’s good enough for me
C is for [consistency], that’s good enough for me
Oh, [consistency], [consistency], [consistency] starts with C!

Cookie Monster, 1972

To maximize performance, compiler and hardware opti-
mizations assume that multithreaded code is correctly syn-
chronized. Consequently, code that is incorrectly synchro-
nized (i.e., has a data race) generally has undefined semantics
on modern shared-memory systems.
We argue for deviating from existing solutions to this

problem in two major ways:
1. Aminimal, “good-enough”memory consistencymodel

would eliminate the most serious memory consistency
problems and provide a sufficient foundation for lan-
guages and systems.

2. Restricting compiler optimizations is impractical, and
we must allow compilers to optimize with abandon in
synchronization-free regions.

A necessary and sufficient solution is to enforce a mem-
ory consistency model in which there is not a cycle of flow
(write–read) dependencies among synchronization-release-
free regions of code, a property we call acyclic region flow
(ARF).

Perhaps surprisingly, an existing runtime system—Dthreads
by Liu et al. [9]—already provides ARF. Although designed for
runtime determinism, Dthreads provides thread isolation be-
tween synchronization operations, effectively enforcing ARF.
A prior evaluation shows that Dthreads’ runtime isolation
actually improves performance over pthreads [9].

The upshot is that compilers should perform unrestricted
optimizations, and compiled programs should run under
Dthreads (with determinism disabled) all the time, to get
efficient, good-enough memory consistency.

1 Problem
Compilers and hardware perform optimizations assuming
that all communication in a shared-memory execution is well
synchronized. These assumptions allow compilers to elimi-
nate redundant loads and stores and out-of-order processors
to reorder loads and stores.
Unfortunately, in their quest for performance, program-

mers often omit necessary synchronization, producing incor-
rectly synchronized code, i.e., code that has a data race: two

ASPLOS WACI, 2019, Providence, RI, USA
2019.

memory accesses to the same variable, at least one of which
is a write, that are not order by synchronization (equiva-
lently: that can happen simultaneously). C/C++ programs
with data races have undefined semantics and have unex-
pected, erroneous behaviors [1, 2, 4, 5]. Java’s memory model
tries to preserve memory and type safety by avoiding so-
called out-of-thin-air (OOTA) results, but the model precludes
common compiler optimizations performed by commercial
JVMs [6, 10, 13, 14]. Data-race-free C++ programs that use
relaxed atomic accesses can, after common compiler opti-
mizations, erroneously produce OOTA results [6, 13].
Figure 1 shows three programs. The programs in Fig-

ures 1(a) and 1(b) have data races. If either racy program
is a C++ program and x and y are regular variables, then
the program has undefined semantics. If either racy pro-
gram is a Java program and x and y are regular variables,
or the program is a C++ program and the accesses to x and
y are relaxed atomic accesses, then compiler and hardware
optimizations should avoid OOTA results, but they do not
necessarily do so in practice. The code in Figure 1(c) has no
data race, so it should execute with SC semantics regardless
of language or variable/access type.
Experts generally think that for Figure 1(a), r1 == 42 is

not an OOTA result and should be allowed. However, r1 ==
42 in Figure 1(b) is an OOTA result because 42 materializes
“out of thin air” and must not be allowed (imagine if x and
y were Java references).1 Likewise, r1 == 42 in Figure 1(c)
is an OOTA result—the program does not even have a data
race!—and must not be allowed regardless of the language
or variable/access type.

However, allowing unrestricted compiler or hardware op-
timizations can lead to OOTA results or undefined semantics
for Figures 1(a), 1(b), and 1(c). Imagine an “optimization”
that speculates that the loads of x and y will return 42, then
later checks that x and y have the value 42—a self-fulfilling
prophecy. This transformation would be correct assuming
data race freedom. Figure 2 shows the code from Figure 1(b)
after such a transformation; the transformed code clearly
permits r1 == 42.
Prior work limits compiler and hardware optimizations

to avoid OOTA results, in many cases providing stronger
guarantees such as sequential consistency (SC). Several run-
time and hardware approaches enforce end-to-end SC with a

1In particular, r1 == 42 should be disallowed for Figure 1(b) if the accesses
are Java accesses or C++ relaxed atomic accesses, not regular C++ accesses.
However, this paper’s solution provides well-defined semantics for all access
types, including regular C++ accesses.



ASPLOS WACI, 2019, Providence, RI, USA Michael D. Bond

Thread 1 Thread 2
r1 = x; r2 = y;
y = r1; x = 42;

(a) Is r1 == 42 possible?

Thread 1 Thread 2
r1 = x; r2 = y;
y = r1; x = r2;

(b) Is r1 == 42 possible?

Thread 1 Thread 2
if (x) if (y)
r1 = y = 42; x = 42;

(c) Is r1 = 42 possible?

Figure 1. Three multithreaded programs, based on examples from prior work
(e.g., [5, 6, 10]). In all cases, x and y are initially 0. Note that because (a) and (b)
have data races, if the accesses to x and y are regular C++ accesses, then the
programs have undefined semantics, as the text explains.

Thread 1 Thread 2
y = r1 = 42; x = r2 = 42;
if (x != 42) if (y != 42)
y = r1 = x; x = r2 = y;

Figure 2. Code from Figure 1(b) after
speculative compiler “optimization.”

combination of compiler optimization restrictions and hard-
ware support [3, 11, 12]. Boehm, Ou, and Demsky propose
to eliminate only OOTA results, by restricting load–store
reordering by the compiler and hardware [6, 13].

Observations and Constraints
We make two key observations that constrain the problem.

First, memory consistency models only need to be
“good enough.” Stronger memory models have not caught
on because they can hurt performance and require changing
compilers or hardware. To minimize these costs, we argue for
good-enough memory consistency that ensures only well-
defined semantics for all programs.
Good-enough memory consistency is sufficient for ad-

dressing the primary memory consistency problems afflict-
ing languages and systems today. Good-enough consistency
enables checkers and analyses to reason about programs
and allows language implementations to provide key prop-
erties such as memory and type safety. Under good-enough
memory consistency, data races would still be considered
errors that should be avoided; programmers should not try
to reason about complex, albeit well-defined, semantics for
data races.

Second, restricting compiler optimizations is imprac-
tical. Modifying compilers to restrict optimizations hurts
performance or adds too much complexity or both. Further-
more, it is difficult to correctly restrict optimizations to en-
sure certain behaviors (cf. [14]). Boehm, Ou, and Demsky
show how compilers can eliminate OOTA results by protect-
ing dependent load–store ordering, but tracking dependen-
cies throughout compiler transformations is complex [6, 13].
Alternatively, restricting reordering more generally adds
performance overheads.
Modern compilers optimize aggressively, assuming no

interactions with other threads except at synchronization
operations.2 We argue that the compiler should be able to
treat a synchronization-free region of code as a “black box”
that provides the same external behavior as the original re-
gion in the source code assuming no interaction with other

2With one exception: They must not introduce speculative writes, which
can introduce data races into data-race-free programs such as Figure 1(c).
With our proposed approach, compilers can ignore this restriction.

threads. As a result, to provide good-enough memory con-
sistency, runtimes or hardware must execute the compiled
program in a way that does not expose the compiler’s unre-
stricted optimizations within synchronization-free regions
of code.

Given these constraints, the rest of this “paper” addresses
the following open question: Is it possible to provide a good-
enough memory model at very low cost without modifying
or restricting compilers?

2 A Good-Enough Memory Model
We propose the acyclic region flow (ARF) memory consis-
tency model for compiled programs, which ensures every
program execution has well-defined, OOTA-free behavior
with respect to the original source program. ARF ensures
that every program execution is equivalent to some execu-
tion in which the flow (write–read) dependencies among
synchronization-release-free regions (RFRs) are acyclic.3 That
is, ARF ensures that for any execution of a program, there ex-
ists a strict partial order ≺ARF that is subject to the following
constraints:

• For two RFRs Ri and R j , Ri ≺HB R j =⇒ Ri ≺ARF R j ,
where ≺HB is the happens-before relation (union of
program order and synchronization order).

• If a read of shared variable x by a region R j reads from
a write to x by region Ri , R j , then
– Ri ≺ARF R j and
– there does not exist a region Rk that writes x such
that Ri ≺HB Rk ≺HB R j .

We argue that ARF is both sufficient and necessary for avoid-
ing undefined behavior:

• Sufficient: An ARF execution corresponds to an execu-
tion of the original program with acyclic flow (write–
read) dependencies, ensuring defined behavior.

• Necessary: Given a non-ARF execution of a program,
it is possible to derive a legal compiled program that
results in an arbitrary OOTA result for that execu-
tion. Imagine compiler “optimizations” that perform

3While prior work has proposed similar models (cf. [13]), that work is in the
context of restricting compiler transformations, not restricting executing
programs compiled without such restrictions.



Good-Enough Memory Consistency ASPLOS WACI, 2019, Providence, RI, USA

transformations that lead to arbitrary communication
between two RFRs for a program that has data races
permitting cyclic dependencies.

3 Enforcing Good-Enough Consistency
Runtime or hardware support can enforce the ARF memory
model by providing isolation among release-free regions—
specifically, by prohibiting a region’s writes from becoming
visible to other threads until the region completes. While
hardware support could help provide such isolation, support-
ing unbounded regions would necessitate a complex design.

Alternatively, we note that existing runtime support called
Dthreads [9] provides ARF out of the box. Dthreads is a
runtime system that runs each thread in isolation, propa-
gating writes to other threads only at synchronization op-
erations, by running each thread as a process and merg-
ing a thread’s writes into global state at synchronization
operations. Dthreads provides thread isolation for the pur-
poses of making programs execute deterministically [9]. Run-
time determinism might hurt scalability, but Dthreads has
a protection-only mode that disables the determinism mech-
anisms and enables only the thread isolation mechanisms.
This mode still provides ARF.

An evaluation by theDthreads authors shows that Dthreads
actually speeds up a set of C programs on average compared
with pthreads, mainly by eliminating false sharing [9]. Re-
lated work shows that isolating threads is helpful for elimi-
nating false sharing [7, 8].
Interestingly, the Dthreads authors discuss memory con-

sistency as a potential limitation. Dthreads provides a form
of release consistency that (in the presence of data races)
can lead to unexpected results compared with execution
under pthreads. Nonetheless, Dthreads strictly strengthens
the memory model over pthreads—providing ARF instead
of DRF0 (i.e., undefined behavior for data races)—extending
well-defined semantics to all programs.

4 Conclusion
Restricting compilers is costly and complex, so compilers
should perform uninhibited optimizations assuming data
race freedom. Good-enough memory consistency would pro-
vide a solid foundation and eliminate the most serious mem-
ory model issues.
ARF is a necessary and sufficient good-enough memory

model. Dthreads provides ARF by isolating threads until syn-
chronization operations, giving all programs well-defined se-
manticswithout restricting compilers. Furthermore, Dthreads
is faster than pthreads on average, according to one evalua-
tion [9]. Thus, unless and until more extensive evaluation
says otherwise, all compiled programs should be run under
Dthreads all of the time. Which just might be good enough.

Acknowledgments
Thanks to Vignesh Balaji, Swarnendu Biswas, Brian Demsky,
Brandon Lucia, and Rui Zhang for helpful discussions and
feedback.

References
[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking

Parallel Languages and Hardware. CACM, 53:90–101, 2010.
[2] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In ISCA,

pages 2–14, 1990.
[3] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Mid-

kiff, and D. Wong. BulkCompiler: High-Performance Sequential Con-
sistency through Cooperative Compiler and Hardware Support. In
MICRO, pages 133–144, 2009.

[4] H.-J. Boehm. How to miscompile programs with “benign” data races.
In HotPar, 2011.

[5] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, pages 68–78, 2008.

[6] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding Out-of-Thin-
Air Results. In MSPC, pages 7:1–7:6, 2014.

[7] C. DeLozier, A. Eizenberg, S. Hu, G. Pokam, and J. Devietti. TMI:
Thread Memory Isolation for False Sharing Repair. In MICRO, pages
639–650, 2017.

[8] T. Liu and E. D. Berger. Sheriff: Precise Detection and Automatic
Mitigation of False Sharing. In OOPSLA, pages 3–18, 2011.

[9] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient Deterministic
Multithreading. In SOSP, pages 327–336, 2011.

[10] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In POPL,
pages 378–391, 2005.

[11] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy.
DRFx: A Simple and Efficient Memory Model for Concurrent Program-
ming Languages. In PLDI, pages 351–362, 2010.

[12] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy.
A Case for an SC-Preserving Compiler. In PLDI, pages 199–210, 2011.

[13] P. Ou and B. Demsky. Towards Understanding the Costs of Avoiding
Out-of-Thin-Air Results. PACMPL, 2(OOPSLA):136:1–136:29, 2018.

[14] J. Ševčík and D. Aspinall. On Validity of Program Transformations in
the Java Memory Model. In ECOOP, pages 27–51, 2008.


	1 Problem
	2 A Good-Enough Memory Model
	3 Enforcing Good-Enough Consistency
	4 Conclusion
	Acknowledgments
	References

