ASPLOS 2023

ASPLOS is the premier forum for interdisciplinary systems research, intersecting computer architecture, hardware and emerging technologies, programming languages and compilers, operating systems, and networking. The 28th edition of the ASPLOS conference will be in Vancouver, Canada.

News

Registration is open!

ASPLOS ’24 CFP is out!


Influential Paper Award


Clearing the clouds: a study of emerging scale-out workloads on modern hardware

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, Babak Falsafi

ASPLOS XVII: Proceedings of the seventeenth international conference on Architectural Support for Programming Languages and Operating Systems, March 2012

Distinguished Paper Awards


Spring

  • Pond: CXL-Based Memory Pooling Systems for Cloud Platforms
    Huaicheng Li (Virginia Tech / Carnegie Mellon Univ.); Daniel S. Berger (Microsoft Azure / Univ. of Washington); Lisa Hsu (unaffiliated); Dan Ernst, Pantea Zardoshti (Microsoft Azure); Stanko Novakovic (Google); Monish Shah, Samir Rajadnya (Microsoft Azure); Scott Lee (Microsoft); Ishwar Agarwal (Intel); Mark D. Hill (Microsoft Azure / Univ. of Wisconsin-Madison); Marcus Fontoura (Stone Co); Ricardo Bianchini (Microsoft Azure)
  • MC Mutants: Evaluating and Improving Testing for Memory Consistency Specifications
    Reese Levine, Tianhao Guo, Mingun Cho (Univ. of California, Santa Cruz); Alan Baker, Raph Levien, David Neto (Google); Andrew Quinn, Tyler Sorensen (Univ. of California, Santa Cruz)

Summer

  • Junkyard Computing: Repurposing Discarded Smartphones to Minimize Carbon
    Jennifer Switzer, Gabriel Marcano, Ryan Kastner, Pat Pannuto (Univ. of California, San Diego)
  • Lucid: A Non-Intrusive, Scalable and Interpretable Scheduler for Deep Learning Training Jobs
    Qinghao Hu, Meng Zhang (Nanyang Technological Univ.); Peng Sun (SenseTime); Yonggang Wen, Tianwei Zhang (Nanyang Technological Univ.)
  • Propeller: A Profile Guided, Relinking Optimizer for Warehouse Scale Applications
    Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman Tallam, Xinliang (David) Li (Google)
  • Hacky Racers: Exploiting Instruction-Level Parallelism to Generate Stealthy Fine-Grained Timers
    Haocheng Xiao, Sam Ainsworth (Univ. of Edinburgh)
  • A Generic Service to Provide In-network Aggregation for Key-value Streams
    Yongchao He (Tsinghua Univ.); Wenfei Wu (Peking Univ.); Yanfang Le (Intel, Barefoot Switch Division); Ming Liu (Univ. of Wisconsin-Madison); ChonLam Lao (Harvard Univ.)

Fall

  • eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC
    Alessandro Rivitti (Axbryd / Tor Vergata Univ. of Rome); Roberto Bifulco (NEC Laboratories Europe); Angelo Tulumello (Axbryd / Tor Vergata Univ. of Rome); Marco Bonola (Axbryd); Salvatore Pontarelli (Sapienza Univ.)
  • RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning
    Haoyuan Wang, Scott Beamer (Univ. of California, Santa Cruz)
  • Going Beyond the Limits of SFI: Flexible Hardware-Assisted In-Process Isolation with HFI
    Shravan Narayan, Tal Garfinkel (Univ. of California, San Diego); ‪Mohammadkazem Taram‬ (Purdue Univ.); Joey Rudek, Daniel Moghimi, Evan Johnson (Univ. of California, San Diego); Chris Fallin (Fastly); Anjo Vahldiek-Oberwagner, Michael LeMay (Intel Labs); Ravi Sahita (Rivos); Dean Tullsen, Deian Stefan (Univ. of California, San Diego)
  • Mosaic Pages: Big TLB Reach with Small Pages
    Krishnan Gosakan (Rutgers Univ.); Jaehyun Han (Univ. of North Carolina at Chapel Hill); William Kuszmaul (Massachusetts Inst. of Technology); Ibrahim Nael Mubarek, Nirjhar Mukherjee (Carnegie Mellon Univ.); Karthik Sriram (Yale Univ.); Guido Tagliavini (Rutgers Univ.); Evan West, Michael Bender (Stony Brook Univ.); Abhishek Bhattacharjee (Yale Univ.); Alex Conway (VMware Research); Martin Farach-Colton (Rutgers Univ.); Jayneel Gandhi (Meta); Rob Johnson (VMware Research); Sudarsun Kannan (Rutgers Univ.); Donald Porter (Univ. of North Carolina at Chapel Hill)

Distinguished Artifact Awards


Spring

  • Risotto: A Dynamic Binary Translator for Weak Memory Model Architectures
    Redha Gouicem (Technische Univ. München); Dennis Sprokholt (Technische Univ. Delft); Jasper Ruehl (Technische Univ. München); Rodrigo C. O. Rocha (Univ. of Edinburgh); Tom Spink (Univ. of St Andrews); Soham Chakraborty (Technische Univ. Delft); Pramod Bhatotia (Technische Univ. München)

Summer

  • Copy-on-Pin: The Missing Piece for Correct Copy-on-Write
    David Hildenbrand, Martin Schulz (Technical Univ. of Munich); Nadav Amit (VMware Research Group)
  • TiLT: A Time-Centric Approach for Stream Query Optimization and Parallelization
    Anand Jayarajan (Univ. of Toronto / Vector Inst.); Wei Zhao, Yudi Sun (Univ. of Toronto); Gennady Pekhimenko (Univ. of Toronto / Vector Inst.)
  • NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers
    Jiawei Liu (Univ. of Illinois Urbana-Champaign); Jinkun Lin, Fabian Ruffy (New York Univ.); Cheng Tan (Northeastern Univ.); Jinyang Li, Aurojit Panda (New York Univ.); Lingming Zhang (Univ. of Illinois Urbana-Champaign)
  • MC Mutants: Evaluating and Improving Testing for Memory Consistency Specifications
    Reese Levine, Tianhao Guo, Mingun Cho (Univ. of California, Santa Cruz); Alan Baker, Raph Levien, David Neto (Google); Andrew Quinn, Tyler Sorensen (Univ. of California, Santa Cruz)
  • Stepwise Debugging for Hardware Accelerators
    Griffin Berlstein, Rachit Nigam (Cornell Univ.); Chris Gyurgyik (Google); Adrian Sampson (Cornell Univ.)
  • Compiling Distributed System Models with PGo
    Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, Ivan Beschastnikh (Univ. of British Columbia)

Fall

  • SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning
    Zihao Ye (Univ. of Washington); Ruihang Lai (Carnegie Mellon Univ.); Junru Shao (OctoML); Tianqi Chen (Carnegie Mellon Univ.); Luis Ceze (Univ. of Washington)
  • Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks
    Tushar Swamy (Stanford Univ.); Annus Zulfiqar (Purdue Univ.); Luigi Nardi (Lund Univ. / Stanford Univ.); Muhammad Shahbaz (Purdue Univ.); Kunle Olukotun (Stanford Univ.)