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1. Motivation

Quantum computing has transitioned from a theoretical
promise to a practical physical realization. However, one
of the major bottlenecks toward a wide adoption of quantum
computers is the high error rate in current Noisy Intermediate-
Scale Quantum (NISQ) machines [13, 7]. Programs run on
NISQ computers program complete successfully, but the the
final outputs may be incorrect. Hence, the programmers do not
know the correct program output (the output if the program
was executed on an error-free quantum machine). While quan-
tum computing promises orders of magnitude performance
improvement for a class of algorithms, such improvements
are not useful if the programmer cannot deduce the correct
program output. Therefore, the goal of this paper is to help
quantum programmers automatically deduce the correct pro-
gram output while running on error-prone NISQ machines.

2. Limitations of the State of the Art

NISQ machines suffer from multiple types of errors such as
qubit coherence errors, quantum gate operation errors, and
state preparation and measurement errors. These can make the
final program output erroneous. However, the error rates of
different qubits on a given machine may differ significantly
depending on the quantum operation type. Therefore, the
impact of the errors experienced by a quantum program can be
reduced by mapping a program’s logical operations to the least
erroneous physical components of a NISQ machine (e.g., avoid
mapping the program on physical qubits that exhibit higher
error rate for a certain type of quantum gate or operation).

Existing approaches attempt to reduce the impact of the
errors experienced by a quantum program by intelligently per-
forming a program’s logical-to-physical mapping to the least
erroneous qubits of a given quantum machine [16, 4, 23, 14,
20, 8, 15, 17, 2]. This approach is known as ‘“‘optimal cir-
cuit mapping” — where the logical operations of a quantum
program are intelligently mapped on a set of physical qubits
considering multiple factors including the historical reliabil-
ity characteristics of the physical qubits (their different error
rates), the physical connection between qubits, and the se-
quence of operations in the quantum program. However, the
current approaches have two major limitations:

I. Lack of knowledge about a program’s true output: Cur-
rent approaches aim to minimize the error occurrence prob-
ability and learn certain characteristics of the program un-
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Figure 1: QRAFT leverages the forward + reverse circuit to gen-
erate accurate estimates of true state probabilities, as com-
pared to existing optimal circuit mapping approaches.

der study (e.g., number of operations, type of operations,
etc.) [21, 11, 1, 3, 23]. However, these approaches do not
(and cannot) know the “correct/true program output” of the
program irrespective of how many times or on which qubits
the program is executed. Hence, the observed output can only
be used as the best guess of the correct program output.

Prior studies assume that they know the correct program out-
put apriori for small-scale quantum algorithms and report the
difference between the observed output and the apriori-known
correct program output as the “error in estimation of the pro-
gram output” [17, 10, 18, 4, 22]. Unfortunately, this approach
is not useful for programmers who may not always know the
correct program output and may have multiple correct output
states with probabilities of different magnitudes. Estimating
the correct probability of these output states is critical, but
current approaches are simply insufficient to tackle this.

I1. Everyone has access to the ‘“best” qubits and knows
which qubits are the best: Existing approaches optimisti-
cally assume that all users have access to all the qubits and
their historical error rates [12, 17, 4, 8, 15, 9, 20], especially
the most reliable ones to run their programs. This assumption
can be seriously challenged in future quantum computing sys-
tems shared among multiple users concurrently [2]. Moreover,
historical error information may become business-sensitive,
similar to classical computing systems.



3. Key Insights

The key insight behind QRAFT ! is to reverse the quantum
circuit and repeatedly execute the full (forward + reverse)
circuit to deduce the correct program output of the original
(or the forward) circuit. Quantum operations, unlike classical
operations, are reversible; that is, the original input can be
restored by applying an inverse operation. QRAFT leverages
this property and extends it to the whole quantum circuit. Since
quantum states cannot be cloned or checkpointed, QRAFT
appends the reverse circuit at the end of the original (forward)
circuit and executes the full (forward + reverse) circuit.

Reversing a circuit enables QRAFT to partially know the in-
herent correct output of the full circuit — all output states must
get reduced to original input states — a piece of “ground truth”
information that is not available to us irrespective of how many
times the original circuit is executed, or on whichever qubit
it is executed. This allows QRAFT to have a better estimation
of how much error might have occurred in the original circuit
execution. This is in contrast to existing approaches, which
solely focus on optimizing the circuit map. As shown in Fig. 1,
the reversibility property of quantum operations, which allows
us to know the ground truth of states at the end of the execution
of the full circuit, has previously not been leveraged to deduce
the correct program output.

4. Main Artifacts

QRAFT is a new methodology for automatically deducing
the correct program output. It is implemented as a soft-
ware tool and evaluated on multiple IBM QX quantum ma-
chines. The workflow of QRAFT includes generating, revers-
ing, and running quantum circuits to construct the training
dataset, training a prediction model using the dataset, and
using the prediction model for predicting true state prob-
abilities of quantum algorithms. Artifacts of QRAFT in-
clude the over 1400 random quantum circuits and quantum
algorithms run using the python-based Qiskit quantum pro-
gramming framework on IBM QX cloud quantum comput-
ers and the model training tools of QRAFT implemented in
MATLAB. QRAFT’s framework is available open-source at:
https://doi.org/10.5281/zenodo.4527305.

5. Key Results and Contributions

QRAFT is a novel, automated method to accurately estimate
the true program output. QRAFT demonstrates that reversing
the circuit can reveal how quantum computer errors affect the
program. While this approach appears to be encouraging, a
straight forward rule-based application of this approach does
not yield the expected results due to the complex interactions
of errors with the underlying original circuit. QRAFT designs
and develops a learning-based prediction model that generates

lQRAFT, pronounced as craft, conveniently stands for quantum circuit
reversal for attaining the full truth (about the program output).

the true output state probabilities based on the observed state
probabilities from the forward circuit and the observed errors
from the forward + reverse circuit.

QRAFT, while being simple in hindsight, is surprisingly
effective and improves upon the state-of-the-art approaches
based on optimizing the circuit mappings to accurately esti-
mate the magnitude of probabilities for programs with multiple
states with non-zero output probabilities. This is a departure
from existing works, which do not handle programs with mul-
tiple states with non-zero output probabilities states effectively
and focus largely on dominant states [19, 15, 17, 1].

Our evaluation demonstrates that QRAFT reduces the me-
dian state error by up to 7%, dominant state error by up to
30%, and total program error by up to 20% across different
algorithms. The state-of-the-art approach has only 20% of
the circuit states with 0% error, while QRAFT ensures that
over 70% of the states have 0% error when tested with 200
previously unseen and randomly generated circuits.

Furthermore, QRAFT demonstrates that it is possible to
deduce the correct program output successfully, even in the
absence of the optimal circuit map (relaxing a prerequisite of
existing approaches, which assume unrestricted access to the
“best” qubits and know which qubits are the best based on the
historical error information). As expected, using the optimal
circuit map makes QRAFT deliver near-perfect deduction of
correct program output in many cases, but QRAFT remains
fairly effective even when a non-optimized circuit map is used.
Our evaluation confirms that QRAFT scales to larger number
of qubits, and its effectiveness it not sensitive to the choice
of the platform or specific circuit characteristics such as the
circuit depth or the number of operations.

6. Why ASPLOS

QRAFT provides a novel solution in the quantum computing
architecture and systems domain — a non-traditional but emerg-
ing area (one of the foci of ASPLOS conference). QRAFT
attempts to bridge the gap between the traditional computer
systems community and the quantum computing community.
Recently, ASPLOS has published multiple quantum comput-
ing systems papers focusing on improving usability and re-
siliency of NISQ devices [9, 5, 8, 6, 19, 14, 4].

7. Citation for Most Influential Paper Award

QRAFT was the first work to leverage and demonstrate the
reversibility property of quantum computing to deduce the
correct output from the erroneous executions of quantum pro-
grams on the then error-prone near-term intermediate scale
quantum computers. QRAFT’s insights and open-source con-
tributions enabled researchers to study and advance various
other aspects of early quantum programs including resiliency,
debugging, correctness, and effective resource management.
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