Robomorphic Computing: A Design Methodology for Domain-Specific
Accelerators Parameterized by Robot Morphology
Extended Abstract

Sabrina M. Neuman', Brian Plancher’, Thomas Bourgeati, Thierry Tambe’,
Srinivas Devadas*, Vijay Janapa Reddi’

T Harvard University
#Massachusetts Institute of Technology
sneuman @seas.harvard.edu, brian_plancher @ g.harvard.edu, bthom @csail.mit.edu, ttambe @g.harvard.edu,

devadas @mit.edu, vj@eecs.harvard.edu

1. Motivation

We tackle the performance bottleneck of robot motion plan-
ning and control, addressing it with a systematic hardware
design methodology that is portable across robot platforms.

Motion planning calculates a valid path from a robot’s start
to goal state. This function is latency-critical and its perfor-
mance limits the robustness and capabilities of robots. A
performance gap of an order of magnitude has emerged in
motion planning and control: robot joint actuators react at
kHz rates, but promising online techniques for complex robots
e.g., manipulators, quadrupeds, and humanoids (Figure 1), are
limited to 100s of Hz by state-of-the-art software [7, 25].

Shrinking this performance gap will enable roboticists to
explore longer planning horizons for robots, increasing their
resilience to disturbances and unlocking new behaviors.

Hardware acceleration can address this challenge, but tra-
ditional hardware design can be tedious, iterative, and costly.
It is essential to formalize design flows to keep development
agile [11] as applications and robot platforms evolve.

2. Limitations of the State of the Art

Current robotics software libraries [15, 4, 21, 9, 19, 12] require
at least an order of magnitude faster performance to enable
emerging online motion planning and control techniques, like
nonlinear model predictive control (MPC) [6, 14, 30, 23], to
approach the kHz speeds at which robot actuators can re-
spond [7, 25]. This gap persists despite their use of software
templating and code generation to optimize functions for a
particular robot model [4, 19]. For example, the gradient of
rigid body dynamics [8, 10, 3], a key compute-bound kernel,
takes up to 30% to 90% of the total runtime of promising
nonlinear MPC systems [25, 24, 3, 23].

Relatively little work in hardware acceleration has been
done for motion planning. Most robotics hardware accelera-
tors have focused on other problems, such as perception and
localization [5, 26, 29]. The few hardware solutions for mo-
tion planning are largely focused on the problem of collision-
detection [20, 17]. They typically target systems with simple

Robomorphic Computing

Robotics Parameterized
Algorithm e.g. inverse HW Template
dynamics (Once)
.-\ HW Template r |E||E|
_’ [m2]7 = f(robot)
= Accelerator @E
” Mo?gﬁsrogy Hardware
= Template Morphology T
U - { (mam
e.g., limb arameters e.g., [mE][EE]
topology, (Per-Robot) J pharallelism,
tﬁ_ joint types sparse linear
j f algebra
iA J \
Robots Customized

Accelerators

Figure 1: Overview of robomorphic computing, a design
methodology to transform robot morphology into customized
accelerator hardware morphology by exploiting robot features
such as limb topology and joint type. This methodology can
be applied to a wide variety of complex robots. Pictured are
the Atlas [1], Spot [2], and LBR iiwa [16] robots, as examples.

dynamics, e.g., cars and drones [27], and do not address the
bottleneck of rigid body dynamics and its gradient.

For all hardware solutions the paramount challenge remains
to make the design process efficient and flexible, providing
systematic methodologies for hardware development that can
generalize across different robots and algorithms.

3. Key Insights

Key insights in our paper are: (1) per-robot optimization tech-
niques, which deliver state-of-the-art performance for robotics
software [4, 19, 22], can be extended to hardware to deliver
superior performance; and (2) these techniques can be formu-
lated as a design methodology for domain-specific accelera-
tors, to systematically customize accelerator hardware based
on robot morphology: robomorphic computing.

Our design methodology (summarized in Figure 1) intro-

duces a mapping between the physical structure of a robot
and basic architectural primitives such as parallelism and data
structure sparsity. In the robomorphic computing design flow:
(1) a parameterized hardware template is created for a robotics
algorithm once, exposing parallelism and matrix sparsity; then,
(2) for each robot, template parameters are set according to the
robot morphology, e.g., limb topology and joint types, creating
an accelerator customized to that robot model.

This work provides a roadmap for future hardware accelera-
tors for robotics. Our design flow provides a reliable pathway
towards identifying useful algorithmic features in robotics
applications, and a mechanistic way of encoding them in
hardware. This relieves the burden of hardware designers
in approaching new algorithms and robots.

4. Main Artifacts

We present: (i) a methodology to systematically design hard-
ware accelerators customized to robot morphology; and what
we believe is (ii) the first hardware accelerator for the rigid
body dynamics gradient, designed with that methodology.

Robomorphic Computing Methodology. We detail our
methodology and apply it to the design of our hardware accel-
erator, following the steps shown in Figure 1.

In Step 1, we expose parallelism in algorithm loops iterating
over robot limbs and links, and map it to parallel processing
elements in the hardware template. We identify linear algebra
operations on key sparse robot matrices, €.g., joint transforma-
tions, and map those to functional units where constant values
and the structure of operations on sparse data structures are
parameterized by the robot links and joint types.

In Step 2, we use the numbers of limbs and links in the robot
to instantiate parallel datapaths in the accelerator template.
We use link inertia values and joint types to set constants and
streamline operations in functional units, e.g., pruning multi-
pliers and adders from sparse matrix-vector multiplications.

Accelerator for Robot Dynamics Gradient. We implement
our dynamics gradient accelerator design on an FPGA for the
iiwa manipulator (Figure 1), and integrate the accelerator in a
coprocessor system connected to a host CPU, as it would be
deployed for an off-the-shelf solution today. We evaluate the
performance of our accelerator compared to state-of-the-art
CPU and GPU baselines [4, 25] (see Figure 2).

We also synthesize an ASIC implementation using a 12 nm
node, evaluating further benefits from a system on chip.

5. Key Results

Our FPGA accelerator achieves speedups of 8 x and 86x over
state-of-the-art CPU and GPU latency, and maintains an over-
all speedup of 1.9x to 2.9x when deployed in a coprocessor
system (Figure 2). ASIC synthesis indicates an additional
7.2x factor over our FPGA implementation.

200.00
180.00
160.00
140.00
120.00
100.00

80.00

60.00

40.00

20.00 I I I
0.00 - - L

CGF C G F C G F C G F
N =10 N =16 N=32 N =64
Motion Trajectory Time Steps

M Compute
1/0 Overhead

TIme (ps)

C G F
N =128

Figure 2: Our robot dynamics gradient accelerator on FPGA
(F) achieves speedups of 2.2 X t0 2.9 x over CPU (C) and 1.9 %
to 5.5 x over GPU (G). Times are coprocessor system latency
for a range of motion planning trajectory time horizons.

6. Contributions

The key contributions of this work include:

e Robomorphic computing: a new general methodology for
the co-design of hardware accelerator architectures based
on the high-level physical topology of a robot;

e Design of the first domain-specific accelerator for the gradi-
ent of rigid body dynamics; and

e Discussion of how our design methodology generalizes
to more complex robot platforms, e.g., quadrupeds and
humanoids, and other computational kernels in robotics.

Robomorphic computing provides a systematic and reliable
shortcut to the traditional hardware accelerator design pro-
cess, which is otherwise tedious, error-prone, and requires
substantial intervention from domain experts.

Our accelerator for the gradient of rigid body dynamics rep-
resents meaningful progress towards real-time, online motion
planning and control for complex robots, the performance of
which is limited by current software solutions.

Using robomorphic computing to shrink this performance
gap will allow robots to plan further into the future, helping
them to safely interact with people in dynamic, unstructured,
and unpredictable environments. This is a critical step towards
enabling robots to realize their potential to address important
societal challenges from elder care [13, 28], to the health and
safety of humans in hazardous environments [18, 31].

Acknowledgment

This material is based upon work supported by the Na-
tional Science Foundation under Grant 2030859, Grant
DGE1745303, and Grant 1718160 and the Defense Advanced
Research Projects Agency under Grant HR001118C0018.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the funding organizations.

References

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

(17]

Boston Dynamics. Atlas® | boston dynamics, Accessed in 2020.
Available: bostondynamics.com/atlas.

Boston Dynamics. Spot® | boston dynamics, Accessed in 2020. Avail-
able: bostondynamics.com/spot.

Justin Carpentier and Nicolas Mansard. Analytical derivatives of rigid
body dynamics algorithms. Robotics: Science and Systems, 2018.
Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph
Mirabel, Florent Lamiraux, Olivier Stasse, and Nicolas Mansard. The
pinocchio c++ library: A fast and flexible implementation of rigid
body dynamics algorithms and their analytical derivatives. In 2079
IEEE/SICE International Symposium on System Integration (SII), pages
614-619. IEEE, 2019.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
In ISCA. ACM/IEEE, 2016.

Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient
numerical methods for nonlinear mpc and moving horizon estimation.
In Nonlinear model predictive control, pages 391-417. Springer, 2009.
Farbod Farshidian, Edo Jelavic, Asutosh Satapathy, Markus Giftthaler,
and Jonas Buchli. Real-time motion planning of legged robots: A
model predictive control approach. In 2017 IEEE-RAS 17th Interna-
tional Conference on Humanoid Robotics (Humanoids), pages 577—
584. 1EEE, 2017.

Roy Featherstone. Rigid body dynamics algorithms. Springer, 2008.
Martin L. Felis. RBDL: an efficient rigid-body dynamics library using
recursive algorithms. Autonomous Robots, pages 1-17, 2016.

Markus Giftthaler, Michael Neunert, Markus Stduble, Marco Frigerio,
Claudio Semini, and Jonas Buchli. Automatic differentiation of rigid
body dynamics for optimal control and estimation. Advanced Robotics,
31(22):1225-1237, 2017.

John L Hennessy and David A Patterson. A new golden age for
computer architecture. Communications of the ACM, 2019.

Michael G Hollars, Dan E Rosenthal, and Michael A Sherman.
SD/FAST user’s manual. Symbolic Dynamics Inc, 1991.

Claudia Kalb. Could a robot care for grandma? National Geographic,
Jan 2020.

Jonas Koenemann, Andrea Del Prete, Yuval Tassa, Emanuel Todorov,
Olivier Stasse, Maren Bennewitz, and Nicolas Mansard. Whole-body
model-predictive control applied to the hrp-2 humanoid. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3346-3351. IEEE, 2015.

Twan Koolen and Robin Deits. Julia for robotics: Simulation and
real-time control in a high-level programming language. In 2079
International Conference on Robotics and Automation (ICRA), pages
604-611. IEEE, 2019.

KUKA AG. Lbr iiwa | kuka ag, Accessed in 2020.
Available: kuka.com/products/robotics-systems/
industrial-robots/lbr-iiwa.

Shiqi Lian, Yinhe Han, Xiaoming Chen, Ying Wang, and Hang Xiao.
Dadu-p: A scalable accelerator for robot motion planning in a dynamic
environment. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pages 1-6. IEEE, 2018.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

Courtney Linder. A cave is no place for humans, so darpa is sending in
the robots. Popular Mechanics, Aug 2019.

Frigerio Marco, Buchli Jonas, Darwin G Caldwell, and Semini Claudio.
RobCoGen: a code generator for efficient kinematics and dynamics
of articulated robots, based on domain specific languages. Journal of
Software Engineering in Robotics, 7(1):36-54, 2016.

Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and
Daniel J Sorin. The microarchitecture of a real-time robot motion
planning accelerator. In MICRO. IEEE/ACM, 2016.

Maximilien Naveau, Justin Carpentier, Sébastien Barthelemy, Olivier
Stasse, and Philippe Soueres. Metapod: Template meta-programming
applied to dynamics: Cop-com trajectories filtering. In Humanoid
Robots (Humanoids), 2014 14th IEEE-RAS International Conference
on, pages 401-406. IEEE, 2014.

Sabrina M Neuman, Twan Koolen, Jules Drean, Jason E Miller, and
Srinivas Devadas. Benchmarking and workload analysis of robot
dynamics algorithms. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2019.

Michael Neunert, Cédric De Crousaz, Fadri Furrer, Mina Kamel, Far-
bod Farshidian, Roland Siegwart, and Jonas Buchli. Fast nonlinear
model predictive control for unified trajectory optimization and track-
ing. In Robotics and Automation (ICRA), 2016 IEEE International
Conference on, pages 1398-1404. IEEE, 2016.

Zherong Pan, Bo Ren, and Dinesh Manocha. Gpu-based contact-aware
trajectory optimization using a smooth force model. In Proceedings
of the 18th annual ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, page 4. ACM, 2019.

Brian Plancher and Scott Kuindersma. A performance analysis of
parallel differential dynamic programming on a gpu. In International
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2018.
Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernandez-Lobato, Gu-
Yeon Wei, and David Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In ISCA. ACM/IEEE, 2016.
Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Es-
maeilzadeh. Robox: An end-to-end solution to accelerate autonomous

control in robotics. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 479—-490. IEEE,

2018.

Jonathan Shaw. The coming eldercare tsunami. Harvard Magazine,
Jan 2020.

Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and
Vivienne Sze. Navion: a fully integrated energy-efficient visual-inertial
odometry accelerator for auto. nav. of nano drones. In VLSI Circuits.
IEEE, 2018.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabiliza-
tion of complex behaviors through online trajectory optimization. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 4906—4913. IEEE, 2012.

Guang-Zhong Yang, Bradley J. Nelson, Robin R. Murphy, Howie
Choset, Henrik Christensen, Steven H. Collins, Paolo Dario, Ken Gold-
berg, Koji Ikuta, Neil Jacobstein, Danica Kragic, Russell H. Taylor,
and Marcia McNutt. Combating covid-19—the role of robotics in
managing public health and infectious diseases. Science Robotics, Mar

bostondynamics.com/atlas
bostondynamics.com/spot
kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa
kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results
	Contributions

