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1. Motivation

We tackle the performance bottleneck of robot motion plan-
ning and control, addressing it with a systematic hardware
design methodology that is portable across robot platforms.

Motion planning calculates a valid path from a robot’s start
to goal state. This function is latency-critical and its perfor-
mance limits the robustness and capabilities of robots. A
performance gap of an order of magnitude has emerged in
motion planning and control: robot joint actuators react at
kHz rates, but promising online techniques for complex robots
e.g., manipulators, quadrupeds, and humanoids (Figure 1), are
limited to 100s of Hz by state-of-the-art software [7, 25].

Shrinking this performance gap will enable roboticists to
explore longer planning horizons for robots, increasing their
resilience to disturbances and unlocking new behaviors.

Hardware acceleration can address this challenge, but tra-
ditional hardware design can be tedious, iterative, and costly.
It is essential to formalize design flows to keep development
agile [11] as applications and robot platforms evolve.

2. Limitations of the State of the Art

Current robotics software libraries [15, 4, 21, 9, 19, 12] require
at least an order of magnitude faster performance to enable
emerging online motion planning and control techniques, like
nonlinear model predictive control (MPC) [6, 14, 30, 23], to
approach the kHz speeds at which robot actuators can re-
spond [7, 25]. This gap persists despite their use of software
templating and code generation to optimize functions for a
particular robot model [4, 19]. For example, the gradient of
rigid body dynamics [8, 10, 3], a key compute-bound kernel,
takes up to 30% to 90% of the total runtime of promising
nonlinear MPC systems [25, 24, 3, 23].

Relatively little work in hardware acceleration has been
done for motion planning. Most robotics hardware accelera-
tors have focused on other problems, such as perception and
localization [5, 26, 29]. The few hardware solutions for mo-
tion planning are largely focused on the problem of collision-
detection [20, 17]. They typically target systems with simple
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Figure 1: Overview of robomorphic computing, a design
methodology to transform robot morphology into customized
accelerator hardware morphology by exploiting robot features
such as limb topology and joint type. This methodology can
be applied to a wide variety of complex robots. Pictured are
the Atlas [1], Spot [2], and LBR iiwa [16] robots, as examples.

dynamics, e.g., cars and drones [27], and do not address the
bottleneck of rigid body dynamics and its gradient.

For all hardware solutions the paramount challenge remains
to make the design process efficient and flexible, providing
systematic methodologies for hardware development that can
generalize across different robots and algorithms.

3. Key Insights

Key insights in our paper are: (1) per-robot optimization tech-
niques, which deliver state-of-the-art performance for robotics
software [4, 19, 22], can be extended to hardware to deliver
superior performance; and (2) these techniques can be formu-
lated as a design methodology for domain-specific accelera-
tors, to systematically customize accelerator hardware based
on robot morphology: robomorphic computing.

Our design methodology (summarized in Figure 1) intro-



duces a mapping between the physical structure of a robot
and basic architectural primitives such as parallelism and data
structure sparsity. In the robomorphic computing design flow:
(1) a parameterized hardware template is created for a robotics
algorithm once, exposing parallelism and matrix sparsity; then,
(2) for each robot, template parameters are set according to the
robot morphology, e.g., limb topology and joint types, creating
an accelerator customized to that robot model.

This work provides a roadmap for future hardware accelera-
tors for robotics. Our design flow provides a reliable pathway
towards identifying useful algorithmic features in robotics
applications, and a mechanistic way of encoding them in
hardware. This relieves the burden of hardware designers
in approaching new algorithms and robots.

4. Main Artifacts

We present: (i) a methodology to systematically design hard-
ware accelerators customized to robot morphology; and what
we believe is (ii) the first hardware accelerator for the rigid
body dynamics gradient, designed with that methodology.

Robomorphic Computing Methodology. We detail our
methodology and apply it to the design of our hardware accel-
erator, following the steps shown in Figure 1.

In Step 1, we expose parallelism in algorithm loops iterating
over robot limbs and links, and map it to parallel processing
elements in the hardware template. We identify linear algebra
operations on key sparse robot matrices, €.g., joint transforma-
tions, and map those to functional units where constant values
and the structure of operations on sparse data structures are
parameterized by the robot links and joint types.

In Step 2, we use the numbers of limbs and links in the robot
to instantiate parallel datapaths in the accelerator template.
We use link inertia values and joint types to set constants and
streamline operations in functional units, e.g., pruning multi-
pliers and adders from sparse matrix-vector multiplications.

Accelerator for Robot Dynamics Gradient. We implement
our dynamics gradient accelerator design on an FPGA for the
iiwa manipulator (Figure 1), and integrate the accelerator in a
coprocessor system connected to a host CPU, as it would be
deployed for an off-the-shelf solution today. We evaluate the
performance of our accelerator compared to state-of-the-art
CPU and GPU baselines [4, 25] (see Figure 2).

We also synthesize an ASIC implementation using a 12 nm
node, evaluating further benefits from a system on chip.

5. Key Results

Our FPGA accelerator achieves speedups of 8 x and 86x over
state-of-the-art CPU and GPU latency, and maintains an over-
all speedup of 1.9x to 2.9x when deployed in a coprocessor
system (Figure 2). ASIC synthesis indicates an additional
7.2x factor over our FPGA implementation.
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Figure 2: Our robot dynamics gradient accelerator on FPGA
(F) achieves speedups of 2.2 X t0 2.9 x over CPU (C) and 1.9 %
to 5.5 x over GPU (G). Times are coprocessor system latency
for a range of motion planning trajectory time horizons.

6. Contributions

The key contributions of this work include:

e Robomorphic computing: a new general methodology for
the co-design of hardware accelerator architectures based
on the high-level physical topology of a robot;

e Design of the first domain-specific accelerator for the gradi-
ent of rigid body dynamics; and

e Discussion of how our design methodology generalizes
to more complex robot platforms, e.g., quadrupeds and
humanoids, and other computational kernels in robotics.

Robomorphic computing provides a systematic and reliable
shortcut to the traditional hardware accelerator design pro-
cess, which is otherwise tedious, error-prone, and requires
substantial intervention from domain experts.

Our accelerator for the gradient of rigid body dynamics rep-
resents meaningful progress towards real-time, online motion
planning and control for complex robots, the performance of
which is limited by current software solutions.

Using robomorphic computing to shrink this performance
gap will allow robots to plan further into the future, helping
them to safely interact with people in dynamic, unstructured,
and unpredictable environments. This is a critical step towards
enabling robots to realize their potential to address important
societal challenges from elder care [13, 28], to the health and
safety of humans in hazardous environments [18, 31].
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