
NeuroEngine: A Hardware-based Event-driven Simulation System
for Advanced Brain-inspired Computing

Extended Abstract

Hunjun Lee?, Chanmyeong Kim?, Yujin Chung, and Jangwoo Kim
Department of Electrical and Computer Engineering, Seoul National University

1. Motivation

Brain-inspired computing aims to understand the mecha-
nisms of the brain and reproduce its computational capabilities
to advance various areas in computer science. Deep learning
is a successful example to greatly improve the field of pattern
recognition and classification by utilizing a simplified artificial
neural network (ANN). To further exploit the computational
capabilities of the brain and thus make more great advances,
various studies rely on spiking neural networks (SNNs) which
closely mimic the computations of the brain [2, 10, 12, 14].

SNNs enable brain-like computations by adopting neuron
models that change their internal states with respect to both
incoming spikes and time. Specifically, various studies iden-
tify the rich temporal dynamics of neuron models whose in-
ternal states gradually change as a significant computational
trait [8, 11]. Therefore, emerging studies actively investi-
gate the potential benefits of SNNs based on such complex
models. For example, studies by Smith propose a new compu-
tational paradigm based on complex neuron models [12, 13].
Meanwhile, Ponulak et al. reproduce the brain’s navigating
function [9], and other works adopt SNNs for feature extrac-
tion [16] or satisfaction problem [4].

To deploy the emerging SNN workloads, researchers rely
on SNN simulation systems simulating the complex neu-
ronal dynamics. Unfortunately, existing SNN simulation sys-
tems suffer from high computational overhead and thus, it
is highly demanding to design a system that enables fast
and energy-efficient SNN simulation.

2. Limitations of the State of the Art
Prior works have proposed multiple solutions to simulate
the complex neuronal dynamics in SNNs; however, existing
methodologies are too slow and energy-inefficient due to their
software-based frameworks or hardware-based but time-driven
execution mechanisms.

There are some SW-based solutions using CPUs or GPUs
to simulate SNNs; however, the inefficiencies of the general
purpose processors make them unsuitable for large scale sim-
ulations. Our profiling results on existing SW-based solu-
tions [5, 17] indicate that they suffer from orders of magnitude
slower simulation compared to HW-based simulators.

Other systems deploy SNN simulations on hardware sub-
strates to accelerate the computations [3, 7]. Although they
relieve the computational overhead to some extent, they still

? These authors contributed equally to this work

SafeW handler

safeW

+ - >0

❷❸

S
p

ik
e

 
b

u
f.

Routing interface

Syn. mem
src dst W d

DatapathsNeu. mem
gE gIV …

We Wi t

We Wi t

Accum &
History buf.

❸

Event scheduler

Composite Q

Spikes

R R

R R

R R

M
e
m

Q

DP

Core

M
e
m

Q

DP

Core

M
e
m

Q

DP

Core

M
e
m

Q

DP

Core

M
e
m

Q

DP

Core

M
e
m

Q

DP

Core

…

State update 

Prediction

❶

SafeW init.
❸

Figure 1: Overview of the NeuroEngine architecture

5
2

7

�

5 6 72 3 41 5 6 72 4 5 72 7❶ ❸❷

(a) (b) (c) (d)

��������

Figure 2: Illustration of the simulation processes with dif-
ferent mechanisms where the dots indicate scheduling and
the lines indicate computations ((a) time-driven, (b) baseline
event-driven, (c) event-driven with a composite queue, and (d)
event-driven with a composite queue and lazy update)

suffer from the intense overhead to update the internal states
due to their time-driven execution mechanisms. To describe
the complex neuronal dynamics, the simulator should keep
multiple internal states dedicated to each neuron and contin-
uously update the states every time quantum (i.e., timestep)
of the simulation. To that end, the time to update the inter-
nal states (i.e., neuron computation) becomes a critical per-
formance bottleneck, which takes up to 99.3% of the total
simulation latency.

3. Key Insights

In this paper, we present NeuroEngine, a fast and energy-
efficient hardware simulator to simulate complex neuronal dy-
namics efficiently. The key idea is to significantly reduce the
number of computations by implementing an event-driven ex-
ecution mechanism instead of compute-intensive time-driven
mechanisms. To achieve the goal, we first identify three ar-
chitectural challenges in implementing an event-driven sim-
ulator. Then, we propose three novel solutions to tackle
each challenge. Our work is very different from existing
state-of-the-art SNN simulators [1, 3] as NeuroEngine is
the first hardware-based simulator to enable the faithful
event-driven simulation for complex neuronal dynamics.

The event-driven simulator reduces the overall latency and
increases energy efficiency by operating with only a small
number of computations. Instead of updating the internal
states of all neurons every timestep, event-driven mechanisms



compute the change over several timesteps only when a neuron
receives or fires a spike. Considering the highly sparse nature
of SNNs, the event-driven mechanism is an efficient candidate
to replace the existing simulation methodology.

However, implementing a hardware-based event-driven sim-
ulator for SNN simulation introduces three challenges. First,
the system requires expensive datapaths to calculate the ag-
gregated change over an arbitrary time interval and to predict
the firing time of the neurons. Second, it requires proper data
structures to efficiently schedule computations for the neu-
rons that receive or fire a spike. Lastly, the scheduling incurs
resource contentions, which limit the parallelization opportu-
nities in SNN simulation. Therefore, we design our simulator,
NeuroEngine, using novel schemes to tackle the identified
challenges (Figure 1). The key ideas are as follows:

3.1. Optimized Computation Datapath - ¶

First, we design optimized datapaths that support neuron com-
putation for event-driven simulations. We reduce the required
bit precision for representing the arbitrary time interval by
splitting the interval into multiple fixed sub-intervals. Also, we
pipeline the datapaths and add forwarding paths for further op-
timizations. Then, we replace the power-hungry divider with
an approximate shift-based divider for further optimizations.
Using our optimized datapaths, we implement our baseline
event-driven simulator that efficiently calculates the internal
state changes and reduces the number of computations com-
pared to the time-driven simulator (Figure 2-(a)/(b)). However,
the simulator suffers from redundant computations in the ab-
sence of proper event scheduling units.

3.2. Composite Event Queue Structure - ·

Next, we devise a composite queue structure to prevent the
simulator from scheduling redundant computations. The com-
posite queue consists of a FIFO queue and a priority queue
with two auxiliary data structures supporting each queue. The
auxiliary data structures detect redundant computations and
remove the computations from the queues. By combining
our composite queue structure with the baseline simulator,
the simulator reduces the number of required computations
(Figure 2-(c)). But, the simulator can still suffer from resource
contentions making it difficult to handle multiple operations
in parallel.

3.3. Lazy Update - ¸

Lastly, we accelerate the overall simulation by parallelizing
different operations of SNN simulation. To achieve the goal,
we design a light-weight method to predict whether a neuron
will fire a spike or not before updating the internal states. The
simulator defers the neuron computations until the neuron is
expected to fire a spike and then schedules the computations
at once (Figure 2-(d)). We call the deferred computations
as lazy update, and implement it to complete the design of

NeuroEngine. The lazy update bypasses the event queue;
therefore, NeuroEngine can parallelize the computations.

4. Main Artifacts

The two main artifacts of this paper are as follows:
NeuroEngine hardware: We implement 32 NeuroEngine
cores on top of the scalable NoC in Verilog and synthesize it
using Samsung 65nm technology. Among the cores, there is
one interface core which acts as programming and reporting
terminal between the NeuroEngine chip and onboard CPU.
SNN compilation toolchain: We develop a toolchain to pro-
gram and deploy SNNs on NeuroEngine. The toolchain pro-
vides a programming interface for describing target SNNs
using Brian2 [15]. Then, we develop a compiler to generate a
connection matrix with parameters and a linker based on a par-
titioning program [6] to distribute neurons to physical cores.
Next, the toolchain sends the configuration data (e.g., map-
ping data and simulation parameters) to the onboard DRAM.
Finally, the toolchain transfers the data stored in DRAM to the
NeuroEngine’s interface core using onboard CPU. We demon-
strate the toolchain by deploying it on the Xilinx VCU1525
FPGA board and use MicroBlaze as an onboard CPU.

5. Key Results and Contributions

In summary, our work makes the following contributions:
• Challenges in Event-driven SNN Simulation System:

We are the first to identify the three challenges in designing
an architecture supporting the event-driven simulation of
SNNs with complex neuronal dynamics.

• Three Novel Architectural Optimizations: We propose
three ideas to solve the identified challenges and implement
a fast and energy-efficient event-driven simulator.

• End-to-End SNN Simulation System: Our NeuroEngine
hardware along with the compilation toolchain enables an
end-to-end SNN simulation framework.

• High Performance Improvement: NeuroEngine achieves
4.30× speedup and 2.60× energy efficiency over the state-
of-the-art hardware-based time-driven SNN simulators.

6. Potential Impact

Our work provides valuable architectural and systemic insights
for brain-inspired computing. Brain-inspired computing has
been and will be one of the key research topics in both archi-
tecture and system communities due to its significant potential
benefits. Unfortunately, only a few works focus on designing
a system supporting brain-inspired computing using SNNs.
Therefore, we believe that our work will provide guidelines
for future system designs. First, the three key ideas show how
we exploit the SNNs’ unique characteristics for optimized
architectural support. Second, our end-to-end system imple-
mentation with the toolchain provides an example operating
model.

2



References
[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza,

John Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab
Datta, Gi-Joon Nam, Brian Taba, Michael Beakes, Bernard Brezzo,
Jente B. Kuang, Rajit Manohar, William P. Risk, Bryan Jackson, and
Dharmendra S. Modha. TrueNorth: Design and Tool Flow of a 65
mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(10), 2015.

[2] Iulia M Comsa, Thomas Fischbacher, Krzysztof Potempa, Andrea
Gesmundo, Luca Versari, and Jyrki Alakuijala. Temporal coding in
spiking neural networks with alpha synaptic function. In Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020.

[3] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines,
Ruokun Liu, Deepak Mathaikutty, Steve McCoy, Arnab Paul, Jonathan
Tse, Guruguhanathan, Venkataramanan, Yi-Hsin Weng, Andreas Wild,
Yoonseok Yang, and Hong Wang. Loihi: A Neuromorphic Manycore
Processor with On-Chip Learning. IEEE Micro, 38(1), 2018.

[4] Gabriel A Fonseca Guerra and Steve B Furber. Using stochastic spiking
neural networks on spinnaker to solve constraint satisfaction problems.
Frontiers in neuroscience, 11:714, 2017.

[5] Marc-Oliver Gewaltig and Markus Diesmann. NEST (NEural Simula-
tion Tool). Scholarpedia, 2(4), 2007.

[6] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

[7] Dayeol Lee, Gwangmu Lee, Dongup Kwon, Sunghwa Lee, Youngsok
Kim, and Jangwoo Kim. Flexon: A Flexible Digital Neuron for Effi-
cient Spiking Neural Network Simulations. In Proc. 45th ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2018.

[8] Wolfgang Maass. Networks of Spiking Neurons: The Third Generation
of Neural Network Models. Neural Networks, 10(9), 1997.

[9] Filip Jan Ponulak and John J Hopfield. Rapid, parallel path planning
by propagating wavefronts of spiking neural activity. Frontiers in
computational neuroscience, 7:98, 2013.

[10] Saunak Saha, Henry Duwe, and Joseph Zambreno. CyNAPSE: A
Low-power Reconfigurable Neural Inference Accelerator for Spiking
Neural Networks. Journal of Signal Processing Systems, 92, 2020.

[11] James E Smith. Efficient digital neurons for large scale cortical ar-
chitectures. In Proc. 41st ACM/IEEE International Symposium on
Computer Architecture (ISCA), 2014.

[12] James E. Smith. Space-Time Computing with Temporal Neural Net-
works. Morgan & Claypool, 2017.

[13] James E Smith. Space-time algebra: a model for neocortical computa-
tion. In Proc. 45th ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2018.

[14] James E. Smith. A Neuromorphic Paradigm for Online Unsupervised
Clustering. arXiv preprint arXiv:2005.04170, 2020.

[15] Marcel Stimberg, Romain Brette, and Dan FM Goodman. Brian 2, an
intuitive and efficient neural simulator. Elife, 8, 2019.

[16] Ping Tak Peter Tang, Tsung-Han Lin, and Mike Davies. Sparse coding
by spiking neural networks: Convergence theory and computational
results. arXiv preprint arXiv:1705.05475, 2017.

[17] Esin Yavuz, James Turner, and Thomas Nowotny. GeNN: a code
generation framework for accelerated brain simulations. Scientific
Reports, 6, 2016.

3


	Motivation
	Limitations of the State of the Art
	Key Insights
	Optimized Computation Datapath - ❶
	Composite Event Queue Structure - ❷
	Lazy Update - ❸

	Main Artifacts
	Key Results and Contributions
	Potential Impact

