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Abstract
The most important security benefit of software memory
safety is easy to state: for C and C++ software, attackers can
exploit most bugs and vulnerabilities to gain full, unfettered
control of software behavior, whereas this is not true for
most bugs in memory-safe software.
Fortunately, this security benefit—most bugs don’t give

attackers full control—can be had for unmodified C/C++ soft-
ware, without per-application effort.

This doesn’t require trying to establish memory safety;
instead, it is sufficient to eliminate most of the combinatorial
ways in which software with corrupted memory can execute.
To eliminate these interleavings, there already exist practical
compiler and runtime mechanisms that incur little overhead
and need no special hardware or platform support.

1 Why Even Make the Attempt?
In modern computing, attackers continue to exploit memory-
corruption vulnerabilities to devastating effect. Most distress-
ingly, important stakeholders are starting to demand that
we technologists do something about this [6].

The risk is especially high for server-side software, since
software on client devices, like phones, have been quite suc-
cessfully hardened against attacks [12]. This leaves us in a
quandary: almost all of our server-side software platforms
are written in C and C++, where memory-corruption is pos-
sible, and it will take a decade or more for us to rewrite those
foundations to have memory safety [25].
For our job security, if nothing else, we have an obliga-

tion to examine whether there is any way to make rapid
progress on reducing the risk of ruinous server-side attacks.
In this, we must temper our expectations: without memory
safety, attackers will still be able to change software behav-
ior, at least somehow. But, perhaps there is some way—e.g.,
along the lines already used to successfully reduce risk in
client software [4]—to prevent attackers from completely
controlling software behavior, even without fully eliminat-
ing memory-corruption bugs in the software.
If we find success, we may get satisfaction from having

made the world safer or even a better parking spot at work.

* This is a tongue-in-cheek paper written for the WACI (Wild and Crazy
Ideas) Session at the ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), held in Rotterdam,
The Netherlands, April 2025. It was inspired by Shepherd Mead’s timeless
guide [19], as a flippant companion to Arxiv:2503.21145, Erlingsson et al.,
How to Secure Existing C and C++ Software without Memory Safety [10].
** The opinions and humor are those of the author, not their employer.

2 What Would Success Look Like?
Our efforts have to significantly reduce the risk from attacks,
in a meaningful, visible way; otherwise, nobody might even
notice, so it hardly seems worth trying at all.
Remote Code Execution (RCE) attacks—where attackers

exploit memory-corruption bugs to achieve complete control
and dominion—are a very important class of potentially-
devastating attacks that get high publicity and loom large in
peoples’ minds, since they occur so often in the movies.
Greatly reducing the risk of RCE attacks in C and C++

software, despite the presence of memory-corruption bugs,
would therefore be one path to success—especially if such
attacks could be almost completely prevented.

Of course, to seize the moment, we must make rapid head-
way towards this goal, and we don’t have the time, energy,
or resources—and, to be honest, probably not the talent—to
develop or deploy new security technologies. So, for our
purpose, we should consider only variants or combinations
of low-cost, off-the shelf practical techniques.

3 Can We Appropriate Existing Work?
To avoid doing hard work, let’s consider only security mech-
anisms that are already implemented on major platforms
and have seen widespread deployment and use.
Also, to avoid wasting our time, let’s focus on practical,

low-overhead techniques known for preventing attacker ex-
ploits of memory-corruption bugs in C and C++ software.

Finally, to avoid being so esoteric that nobody cares, let’s
not look at approaches that require special hardware support.

Below are four such exploit-mitigation technologies.

Stack Integrity. Attackers delight in memory-corruption
bugs that allow them tomodify or control one of the function-
call stacks of executing C and C++ software, since this can
allow them to completely dictate behavior [26].
Two decades ago, CCured and XFI showed how each C

and C++ execution stack can be isolated from the effects of
memory-corruption bugs, effectively or absolutely, in an effi-
cient manner [11, 20]. For this, compilers need only generate
code as if for a segmented-memory system [15], permitting
only constant updates to the stack pointer and moving all
pointer-accessed variables off the stack—for efficiency, onto
a dedicated, thread-local heap memory region [11].

Such stack integrity is already implemented by the LLVM
compiler, in a practical manner [18]. Its low overhead can be
made negligible (by static analysis of C++ references), and
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its guarantees can be made absolute by preventing writes
through pointers from modifying any stack memory.
With stack integrity, attackers cannot change the argu-

ments, local variables, or return sites of functions—as long
as function calls are also restricted, e.g., as described next.

Control-Flow Integrity. To gain complete RCE control,
attackers must direct execution to code of their choosing.
It is simple to block attackers from executing their own

code, e.g., by preventing the addition of any new code.
However, attackers may still exploit memory corruption

to redirect execution within the existing software code [26].
Fortunately, in C and C++ software—once stack integrity is
enforced—any such redirection can be tamed by preventing
unintended use of function pointers and C++ vtables.

Control-flow integrity (CFI) ensures that each function-call
site will—despite any memory corruption—only ever direct
execution to the start of a compatible function. Specifically,
CFI can ensure that any function called via a pointer has a
type signature, or is a (virtual) member function of a class,
that matches the source code for the call site [1, 28].
CFI is widely enforced by low-overhead, compiler-added

checks [17, 28] that harden software against attack [21, 22,
29], sometimes with hardware support [3, 7]. Combined with
stack integrity, CFI can inductively guarantee that software
always executes, as intended, as a well-nested sequence of
functions with uncorrupted arguments and variables [11].

Heap Data Integrity. Attackers usually must perform
“heap feng shui” (i.e., manipulate the precise heap layout) to
be able to corrupt heap memory in a targeted way [27].

There are many efficient ways to improve the integrity of
the C and C++ heap, most using hardware support [4, 16].
One simple software means of protecting the heap is to

partition memory into many disjoint regions, such that each
static heap-object allocation site uses only one region [8].
With enough partitions, attackers lose their “feng shui”

control over heap layout, and thereby near all means for
targeted heap corruption—whether by temporal bugs, like
use-after-free, or spatial bugs, like overflows. Also, by con-
fining each heap-pointer access to the range of statically-
accessible heap partitions, the attackers’ ability to exploit
memory corruption can be reduced even further [5, 8].
Attackers are impeded even by coarse heap partitioning,

such as by size [13]. However, stronger heap integrity can
be had by partitioning more finely, using static namespaces,
types, etc. This is increasingly done, as it allows trading
higher resource overheads for improved security [2, 23].

Pointer Integrity and Unforgeability. To be successful,
RCE attacks using memory corruption must, near always,
reliably retarget some pointer. Such retargeting can be made
next to impossible, by making C and C++ pointers more sim-
ilar to true capabilities—that is unforgeable and unguessable.

Randomly-generated secrets can be used to make pointers
emulate true capabilities, especially on 64-bit hardware.

Randomizing the layout of memory with a secret is a com-
mon RCE defense, especially useful on servers, as it forces
attacks to take an often difficult derandomization step [14].

Each pointer value can also be randomized, using a differ-
ent secret for each type of pointer, as long as pointers are
derandomized in the software code before each use.

This is effectively what is done in Apple software, which
uses special ARM hardware support to also check pointer
integrity at runtime—i.e., ensure each pointer access uses
pointers of the right type [4, 24]. Apple uses this further to
enforce a form of stack integrity, CFI, and heap integrity [4].

When used as an orthogonal layer of defense, in addition
to the above three types of integrity, pointer randomization—
even without runtime checks—is a formidable barrier to RCE
attacks based on C and C++ memory corruption.

4 Why is Success a Sure Thing?
Can we be sure that the above protections, when combined,
will significantly reduce the risk of RCE attacks in C and C++
software? After all, despite enforcing four types of integrity,
we are not really trying to establish memory safety, which
means attackers can still use memory corruption to change
software behavior. And, we should not risk even a hint of
failure, according to our timeless guide [19].
Yes, empirically, as per the incidence and price of RCE

attacks on Apple client software using these defenses [12].
Yes, intuitively. From the attacker’s viewpoint, RCE at-

tacks are enabled by the vast number of invalid paths and
interleavings that become possible in the “weird machine” of
corrupted software execution [9]. With these protections, at-
tackers can choose only new behaviors that conform to valid,
well-nested sequences of calls to compatible functions in the
software—with uncorrupted arguments and local variables—
that operate on strictly-partitioned data objects accessed via
almost-unforgeable pointer values.

Of course, attackers may still be able to achieve RCE due
to factors such as misconfiguration or bugs in the protec-
tions, platform, or hardware, but this is also possible for
memory-safe software. Also, for certain, particular software,
the protections may simply not be strong enough; for exam-
ple, in software that contains a general execution engine, an
RCE attack may be possible by corrupting the memory that
contains the interpreter inputs.
In all cases, the protections form a sound basis for what-

ever additional defenses are required, such as isolated parti-
tioning of interpreter inputs or further runtime checks [1].
Also, it wasn’t like we were shooting for the moon, or

that penthouse corner office. Our success goal has only been
to prevent most of the most devastating types of memory-
corruption attacks, most of the time—in a practical, low-
cost manner, using existing techniques that can be rapidly
adopted—and get a window office on a higher floor.

We should make the attempt, looking forward to the view.
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