
Uncovering Performance Opportunities by Relaxing Program
Semantics of GPGPU Kernels

Jhe-Yu Liou
Arizona State University

Tempe, AZ

jhe-yu.liou@asu.edu

Stephanie Forrest
Arizona State University

Tempe, AZ

Stephanie.Forrest@asu.edu

Carole-Jean Wu
Arizona State University

Tempe, AZ

carole-jean.wu@asu.edu

1 INTRODUCTION
Approximate computing trades of computation precision for de-

sirable properties such as improved runtime or energy eiciency,

typically through methods such as precision scaling or task skip-

ping. These methods are particularly appropriate for error-tolerant

applications such as image processing, e.g., [2]. Here we focus

on Machine Learning (ML) kernels, in order to expose additional

performance-accuracy optimization opportunities [4]. By relaxing

the requirement to preserve semantics, our wacky idea involves

pushing error tolerance in ML kernels down to the code level in

exchange for inding performance tuning opportunities on GPUs.

Over the past decade, stochastic search algorithms have been ap-

plied to a variety of software engineering problems with increasing

success, despite the fact that they do not necessarily enforce exact

semantic equivalence, relying instead on test suites to encode the

required behavior of the program [3]. Earlier work used evolution-

ary computation to evolve neural network architectures [7], but

this is the irst work we know of to evolve the code that implements

the ML kernels. There have been few attempts to apply stochastic

search to the LLVM intermediate representation (LLVM-IR), in part

because the IR has many data dependencies and requires careful

implementation of code modiication operations. Despite this chal-

lenge, LLVM-IR is the only post-compiler-optimized representation

for CUDA GPU program with ease of manipulation from the LLVM

compiler framework, while the other 2 possible representations,

PTX and SASS, are not supported by reliable and open-sourced

compiler tools.

We propose GEVO-approx (Gpu EVOlution for approximate com-

puting), a post-compilation performance tuning approach, to dis-

cover optimized GPGPU kernel implementations using Genetic

Programming (GP). GEVO-approx encodes desired optimization

objectives as the itness function and implements a set of mutation

and recombination operators for GPU kernel transformations at

the LLVM-IR granularity. GEVO evolves kernel implementations

based on the itness of individuals in the population. We show how

GEVO-approx can simultaneously tune code to meet two indepen-

dent objectivesÐruntime and accuracyÐusing GPGPU kernels on

NVIDIA Tesla P1000 GPUs. GEVO-approx improves kernel runtime

performance from 12% to 393%, and our analysis reveals interesting

optimizations that cannot be realized using traditional compiler

optimization techniques. We ind architecture-, application-, and

dataset-speciic performance tuning opportunities

2 THE PROPOSED DESIGN: GEVO-APPROX
GEVO-approx, takes as input a GPGPU program, a comprehensive

set of test cases that specify required program functionality, and a

multi-dimensional itness function for optimization. GEVO-approx

Population

Selection

CrossoverMutation

Evaluation
Evolution

Fitness 

function

Test cases

Application

GPU 

kernel

Figure 1: GEVO-approx Execution Flow.

attempts to maximize the itness function by evolving and eval-

uating mutated kernel variants in an iterative population-based

search. GEVO’s basic design follows earlier work applying Genetic

Programming (GP) to software [5, 6], but many details have been

redesigned to accommodate the LLVM-IR. Kernels in a GPGPU

program are irst compiled into LLVM-IR with the clang compiler.

GEVO-approx then takes kernels in the LLVM-IR format as inputs

and uses GP to discover improved kernel implementations as de-

ined by the itness function. Figure 1 depicts the execution low,

highlighting the key operations.

GEVO-approx searches for high-itness program variants using

three operators: Mutation, Crossover, and Selection. Mutation

introduces a random change to a single instruction in the pro-

gram. Crossover hybridizes two individual program variants, by

exchanging subsections of their code, and Selection chooses pro-

gram variants to be retained in the search according to itness. Since

our itness function is two-dimensional, the algorithm returns a

Pareto set of options, performing multi-objective optimization.

3 EXPERIMENTAL SETUP
Experimental Systems We instrumented the LLVM-8 compiler

with redesigned C++ genetic operators. For each GPGPU applica-

tion, GEVO-approx is given a 48-hour budget to search for optimiza-

tions. All GEVO experiments were conducted with population size

of 256, crossover rate of 80% (i.e., 80% of individuals in population

are selected for crossover), and a mutation rate of 30% (i.e., every

individual has 30% chance to get one mutation).

Applications and Test Suites: To assess GEVO-approx, we use

error-tolerant GPGPU applications, Particle Filter (pf), Needleman-

Wunsch (nw), and Hotspot (hs) [1], and ThunderSVM, an open-

source support vector machine library for GPUs [8].We constructed

two workloads for the SVM using two diferent datasets: handwrit-

ing recognition (MNIST) and income prediction (a9a).

To validate kernel variants, we use all the default test suites

input, and we generate many additional test using application input

generators, generating from tens of thousands to millions of input

values. For ML workloads, we evaluate on the training dataset

using 2-fold cross validation, rejecting kernel variants that exceed



pf nw hs

GPGPU applications

1.0

1.2

1.4

1.6

1.8

2.0

P
e
rf
o
rm

a
n
c
e
Im

p
ro
v
e
m
e
n
t

mnist a9a

ML workloads

1

2

3

4

5

Figure 2: The best performance improvement over default

baseline under 1% error tolerance.

1% output error or 1% additional training error. After training, we

evaluate on the default testing dataset, and then test for generality

on a much larger training dataset.

4 EARLY RESULTS
Figure 2 presents the performance improvement opportunities un-

covered by GEVO-approx over the default baseline with full com-

pilation optimization. With 1% output accuracy relaxation, GEVO-

approx improves runtime performance from 12% for pf to 38% for

hs. GEVO-approx uncovers signiicant performance tuning oppor-

tunities for the ML workloads, leading to 4.38X and 4.93X training

time reduction for mnist and a9a. We used our mnist-optimized

kernel to train on a supplied large dataset instead of the training

dataset (8,000,000 vs 60,000 image samples) training time was re-

duced further from 1181 to 121 minutes, 9.76X reduction.

Figure 3 depicts the Pareto frontier of kernel variants found

for a9a. The best kernel of a9a is the leftmost data point, which

incurs 0.84% accuracy penalty for large runtime improvement. ML

application engineers can navigate the Pareto-frontier generated

by GEVO-approx to identify a best-performing kernel variant that

meets the desirable error rate. Sometimes it is possible to ind

improvements in both dimensions, e.g., the bottom left data point

might has better accuracy than the baseline and achieves 2.93X

training time reduction.

We manually inspected the the ittest kernel variants to analyze

what changes led to the improvements. Although some improve-

ments came from single mutation operations, others involved com-

binations of mutations, which could not be achieved independently.

Here are the most common optimizations we found:

• Removing synchronization primitives (in hs, nw): Although gen-

erally risky, some syncthread() calls in CUDA can be removed

because the thread scheduler in the GPU hardware provides

redundant synchronizations under particular memory access

patterns.

• Removing conditional execution (in hs, pf): GEVO eliminates code

blocks from the conditional path when the input space does not

touch that portion of the kernel.

• Loop perforation (in hs): GEVO discovers loop perforations, for

example, when loops have been unrolled heavily post-compilation.

GEVO then removes some part(s) of the unrolled loop.

• Memoization (in hs): GEVO identiies memoization opportuni-

ties by eliminating unneeded instructions and using stored results

directly. hs performs some pre-processing based on the physical

dimension of the processor chip. Since the shape of simulated

15

15.5

16

16.5

0 1 2 3 4 5 6 7 8

P
re

d
ic

ti
o
n
 E

rr
o
r 

(%
)

Runtime (s)

Pareto fontier

Kernel Variants

Unmodified

Figure 3: The Pareto-frontier of kernel variants for a9a.

chips is the same across all loop iterations, GEVO discovers op-

portunities to reuse the preprocessing results of the x-dimension

for the y-dimension.

• Convergence relaxation (ML workloads): GEVO-approxmodiied

the behavior of the ML training kernel, by indirectly relaxing its

convergence bound and reducing training time signiicantly. In

SVM, the regularization parameter is a user-adjustable variable

that determines the balance between generalization and model

accuracy, controlling the convergence condition.

5 SUMMARY
GEVO explores performance tuning opportunities for approximate

computing by relaxing program semantics of GPGPU kernels. GEVO-

approx inds kernels with 12-38% performance speedup with 1%

error tolerance for pf, nw, hs, and 4.38/4.93 times training time

reduction for the ML models. GEVO-approx can efectively exploit

test-case based semantics to tune LLVM-IR code with application-

speciic, architecture-speciic, and dataset-speciic optimizations.

Although preliminary, these results suggest that signiicant per-

formance gains can be achieved by relaxing semantic correctness

and carefully tuning LLVM-IR codes to their expected operating

conditions. For applications, like deep learning, where architectures

are designed for speciic kinds of datasets, GEVO can potentially ac-

celerate training times signiicantly with minimal accuracy penalty.

REFERENCES
[1] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheafer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing.

[2] Sparsh Mittal. 2016. A Survey of Techniques for Approximate Computing. ACM
Comput. Surv. (2016).

[3] Justyna Petke, Saemundur O Haraldsson, Mark Harman, William B Langdon,
David R White, and John R Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Transactions on Evolutionary Computation (2018).

[4] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data Types for Safe and
General Low-power Computation. In Proc. of the ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation.

[5] Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest. 2013.
Automated Repair of Binary and Assembly Programs for Cooperating Embedded
Devices. In Proc. of the Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems.

[6] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley
Weimer. 2014. Post-compiler Software Optimization for Reducing Energy. In
Proc. of the Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems.

[7] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evol. Comput. (2002).

[8] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. 2018. Thun-
derSVM: A Fast SVM Library on GPUs and CPUs. Journal of Machine Learning
Research (2018).

2


	1 Introduction
	2 The Proposed Design: GEVO-approx
	3 Experimental Setup
	4 Early Results
	5 Summary
	References

